
• Problems: There are 8 problems (29 pages in all) in this packet.

• Problem Input: Input to each problem are done through the input
file. Input filenames are given in the Problem Information Sheet.

• Problem Output: All output should be directed to standard output
(screen output).

• Time Limit: The judges will run each submitted program with
certain time limit (given in the Problem Information Sheet).

1



Table 1: Problem Information Sheet
Problem Name Input File Time Limit

Problem A Tiling Up Blocks pa.in 30 secs.
Problem B Quad Trees pb.in 30 secs.
Problem C The Suspects pc.in 30 secs.
Problem D The Geodetic Set Problem pd.in 30 secs.
Problem E Cave Raider pe.in 30 secs.
Problem F Gap Punishment Alignment Problem pf.in 30 secs.
Problem G Space AI Bombs pg.in 30 secs.
Problem H Merging Sequences Problem ph.in 30 secs.

2



Problem A
Tiling Up Blocks

Input File: pa.in

Michael The Kid receives an interesting game set from his grandparent as his

birthday gift. Inside the game set box, there are n tiling blocks and each block has a

form as follows:

Start of Left Start of Middle
3 2

Figure 1: Michael’s Tiling Block with parameters (3,2).

Each tiling block is associated with two parameters (`, m), meaning that the upper

face of the block is packed with ` protruding knobs on the left and m protruding knobs

on the middle. Correspondingly, the bottom face of an (`, m)-block is carved with `

caving dens on the left and m dens on the middle.

It is easily seen that an (`, m)-block can be tiled upon another (`, m)-block. How-

ever, this is not the only way for us to tile up the blocks. Actually, an (`, m)-block

can be tiled upon another (`′, m′)-block if and only if ` ≥ `′ and m ≥ m′.

Now the puzzle that Michael wants to solve is to decide what is the tallest tiling

blocks he can make out of the given n blocks within his game box. In other words, you

are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated

with two parameters (`i, mi). The objective of the problem is to decide the number of

tallest tiling blocks made from B.

Input Format: Several sets of tiling blocks. The inputs are just a list of integers.

For each set of tiling blocks, the first integer n represents the number of blocks within

the game box. Following n, there will be n lines specifying parameters of blocks in

3



B; each line contains exactly two integers, representing left and middle parameters

of the i-th block, namely, `i and mi. In other words, a game box is just a collection

of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters

(`i, mi).

Note that n can be as large as 10000 and `i and mi are in the range from 1 to 100.

An integer n = 0 (zero) signifies the end of input.

Output Format: For each set of tiling blocks B, output the number of the tallest

tiling blocks can be made out of B. Output a single star ‘*’ to signify the end of

outputs.

4



Sample Input

3

3 2

1 1

2 3

5

4 2

2 4

3 3

1 1

5 5

0

Output for the Sample Input

2

3

*

5



Problem B
Quad Trees

Input File: pb.in

A binary image, such as the one shown in Figure 2(a), is usually represented as an

array of binary entries, i.e., each entry of the array has value 0 or 1. Figure 2(b) shows

the array that represents the binary image in Figure 2(a). To store the binary image

of Figure 2(b), the so-called quad tree partition is usually used. For an N ×N array,

N ≤ 512 and N = 2i for some positive integer i, if the entries do not have the same

value, then it is partitioned into four N/2 × N/2 arrays, as shown in Figure 2(c). If

an N/2×N/2 array does not have the same binary value, such as the upper right and

lower right N/2×N/2 arrays in Figure 2(c), then we can divide it into four N/4×N/4

arrays again. These N/4×N/4 arrays in turn can also, if needed, be divided into four

N/8 × N/8 arrays, etc.. The quad tree partition is completed when the whole array

is partitioned into arrays of various size in which each array contains only one binary

value. Figure 2(c) contains the arrays after the quad tree partition is completed.

Instead of storing the binary image of Figure 2(a), we only need to store the quad

tree in the form as Figure 2(d) which is encoded from Figure 2(c). In Figure 2(d), each

node represents an array of Figure 2(c) in which the root node represents the original

array. If the value of a node in the tree is 1, then it means that its corresponding

array needs to be decomposed into four smaller arrays. Otherwise, a node will have

a pair of values and the first one is 0. It means that its corresponding array is not

necessary to decompose any more. In this case, the second value is 0 (respectively,

1) to indicate that all the entries in the array are 0 (respectively, 1). Thus, we only

need to store the tree of Figure 2(d) to replace storing the binary image of Figure

2(a). The way to store the tree of Figure 2(d) can be represented by the following

6



Figure 2: A binary image (a), its array representation (b), its quad tree partition (c),
and its quad tree representation (d).

code: (1)(0,0)(1)(0,1)(1)(0,0)(0,1)(1)(0,0)(0,0)(0,0)(0,1)(0,1)(0,0)(0,1)(0,0)(0,1). This

code is just to list the values of the nodes from the root to leaves and from left to right

in each level. Deleting the parentheses and commas, we can obtain a binary number

100101100011000000010100010001 which is equal to 258C0511 in hexadecimal. You

are asked to design a program for finding the resulting hexadecimal value for each

given image.

Input Format: There is an integer number k, 1 ≤ k ≤ 100, in the first line to

7



indicate the number of test cases. In each test case, the first line is also a positive

integer N indicating that the binary image is an N × N array, where N ≤ 512 and

N = 2i for some positive integer i. Then, an N ×N binary array is followed in which

at least one blank is between any two elements.

Output Format: The bit stream (in hexadecimal) used to code each input array.

8



Sample Input

3

2

0 0

0 0

4

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

8

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Output for the Sample Input

0

114

258C0511

9



Problem C

The Suspects

Input File: pc.in

Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown

aetiology, was recognized as a global threat in mid-March 2003. To minimize trans-

mission to others, the best strategy is to separate the suspects from others.

In the Not-Spreading-Your-Sickness University (NSYSU), there are many student

groups. Students in the same group intercommunicate with each other frequently, and

a student may join several groups. To prevent the possible transmissions of SARS, the

NSYSU collects the member lists of all student groups, and makes the following rule

in their standard operation procedure (SOP).

Once a member in a group is a suspect, all members in the group are

suspects.

However, they find that it is not easy to identify all the suspects when a student is

recognized as a suspect. Your job is to write a program which finds all the suspects.

Input Format: The input file contains several cases. Each test case begins with

two integers n and m in a line, where n is the number of students, and m is the

number of groups. You may assume that 0 < n ≤ 30000 and 0 ≤ m ≤ 500. Every

student is numbered by a unique integer between 0 and n−1, and initially student 0 is

recognized as a suspect in all the cases. This line is followed by m member lists of the

groups, one line per group. Each line begins with an integer k by itself representing

the number of members in the group. Following the number of members, there are k

integers representing the students in this group. All the integers in a line are separated

by at least one space.

10



A case with n = 0 and m = 0 indicates the end of the input, and need not be

processed.

Output Format: For each case, output the number of suspects in one line.

11



Sample Input

100 4

2 1 2

5 10 13 11 12 14

2 0 1

2 99 2

200 2

1 5

5 1 2 3 4 5

1 0

0 0

Output for the Sample Input

4

1

1

12



Problem D

The Geodetic Set Problem

Input File: pd.in

Let G = (V, E) be a connected graph without loops and multiple edges, where V

and E are the vertex and edge, respectively, sets of G. For any two vertices u, v ∈ V ,

the distance between vertices u and v in G is the number of edges in a shortest u-v

path. A shortest path between u and v is called a u-v geodesic. Let I(u, v) denote the

set of vertices such that a vertex is in I(u, v) if and only if it is in some u-v geodesic

of G and, for a set S ⊆ V , I(S) =
⋃

u,v∈S

I(u, v). A vertex set D in graph G is called a

geodetic set if I(D) = V . The geodetic set problem is to verify whether D is a geodetic

set or not. We use Figure 3 as an example. In Figure 3, I(2, 5) = {2, 3, 4, 5} since

there are two shortest paths between vertices 2 and 5. We can see that vertices 3 and

4 are lying on one of these two shortest paths respectively. However, I(2, 5) is not a

geodetic set since I(2, 5) 6= V . Vertex set {1, 2, 3, 4, 5} is intuitively a geodetic set of

G. Vertex set D = {1, 2, 5} is also a geodetic set of G since vertex 3 (respectively,

vertex 4) is in the shortest path between vertices 1 and 5 (respectively, vertices 2 and

5). Thus, I(D) = V . Besides, vertex sets {1, 3, 4} and {1, 4, 5} are also geodetic sets.

However, D = {3, 4, 5} is not a geodetic set since vertex 1 is not in I(D).

Input Format: The input file consists of a given graph and several test cases. The

first line contains an integer n indicating the number of vertices in the given graph,

where 2 ≤ n ≤ 40. The vertices of a graph are labeled from 1 to n. Each vertex

has a distinct label. The following n lines represent the adjacent vertices of vertex

i, i = 1, 2, · · · , n. For example, the second line of the sample input indicates that

vertex 1 is adjacent with vertices 2 and 3. Note that any two integers in each line are

separated by at least one space. After these n lines, there is a line which contains the

13



1

2 3

4 5

Figure 3: A graph G.

number of test cases. Each test case is shown in one line and represents a given subset

D of vertices. You have to determine whether D is a geodetic set or not.

Output Format: For each test case, output ‘yes’ in one line if it is a geodetic set

or ‘no’ otherwise.

14



Sample Input

5

2 3

1 3 4

1 2 5

2 5

3 4

6

1 2 3 4 5

1 2 5

2 4

1 3 4

1 4 5

3 4 5

Output for the Sample Input

yes

yes

no

yes

yes

no

15



Problem E

Cave Raider

Input File: pe.in

Afkiyia is a big mountain. Inside the mountain, there are many caves. These caves

are connected by tunnels. Hidden in one of the caves is a terrorist leader. Each tunnel

connects two caves. There could be more than one tunnels connect the same two caves.

At the joint of a tunnel and a cave, there is a door. From time to time, the terrorists

close a tunnel by shutting the two doors at the two ends, and “clean” the tunnel. It is

still a mystery how they clean the tunnel. However, we know that if a person (or any

living creature) is trapped in the tunnel when it is being cleaned, then the person (or

the living creature) will die. After a cleaning of the tunnel is finished, the door will

open, and the tunnel can be used again.

Now the intelligence servicemen have found out which cave the leader is hiding,

and moreover, they know the schedule of the cleaning of the tunnels. Jing Raider is

going to go into the cave and catch the leader. You need to help him find a route so

that he can get to that cave in the shortest time. Be careful not to be trapped in a

tunnel when it is being cleaned.

Input Format: The input consists of a number of test cases. The 1st line of a test

case contains four positive integers n,m, s, t, separated by at least one space, where n

is the number of caves (numbered 1, 2, · · · , n), m is the number of tunnels (numbered

1, 2, · · · , m), s is the cave where Jing is located at time 0, and t is the cave where the

terrorist leader is hiding. (1 ≤ s, t ≤ n ≤ 50 and m ≤ 500).

The next m lines are information of the m tunnels: Each line is a sequence of at

most 35 integers separated by at least one space. The first two integers are the caves

16



that are the ends of the corresponding tunnel. The third integer is the time needed

to travel from one end of the tunnel to the other. This is followed by an increasing

sequence of positive integers (each integer is at most 10000) which are alternately the

closing and the opening times of the tunnel. For example, if the line is

10 14 5 6 7 8 9

then it means that the tunnel connects cave 10 and cave 14, it takes 5 units of time to

go from one end to the other. The tunnel is closed at time 6, opened at time 7, then

closed again at time 8, opened again at time 9. Note that the tunnel is being cleaned

from time 6 to time 7, and then cleaned again from time 8 to time 9. After time 9, it

remains open forever.

If the line is

10 9 15 8 18 23

then it means that the tunnel connects cave 10 and cave 9, it takes 15 units of time

to go from one end to the other. The tunnel is closed at time 8, opened at time 18,

then closed again at time 23. After time 23, it remains closed forever.

The next test case starts after the last line of the previous case. A 0 signals the

end of the input.

Output Format: The output contains one line for each test case. Each line

contains either an integer, which is the time needed for Jing to get to cave t, or the

symbol *, which means that Jing can never get to cave t. Note that the starting time

is 0. So if s = t, i.e., Jing is at the same cave as the terrorist leader, then the output

is 0.

17



Sample Input

2 2 1 2

1 2 5 4 10 14 20 24 30

1 2 6 2 10 22 30

6 9 1 6

1 2 6 5 10

1 3 7 8 20 30 40

2 4 8 5 13 21 30

3 5 10 16 25 34 45

2 5 9 22 32 40 50

3 4 15 2 8 24 34

4 6 10 32 45 56 65

5 6 3 2 5 10 15

2 3 5 2 9 19 25

2 2 1 2

1 2 7 6 9 12

1 2 9 8 12 19

0

Output for the Sample Input

16

55

*

18



Problem F

Gap Punishment Alignment Problem

Input File: pf.in

Consider two strings X = x1x2 · · ·xm and Y = y1y2 · · · yn over an alphabet set

Σ = {A, G, C, T}. Denote Σ? = Σ ∪ {−}, where “−” (dash) is the symbol that

represents a space (or blank) in strings. A string alignment is to align X and Y and

form two strings X?, Y ? over the alphabet Σ? such that:

1. the two strings X?, Y ? have the same lengths, and

2. ignoring dashes, the string X? is the same as the string X, and the string Y ? is

the same as the string Y .

As an example, an alignment of two strings ‘GATCCGA’ and ‘GAAAGCAGA’ is as

follows:

G-A--TCCGA

GAAAG-CAGA.

There are three gaps in the above alignment; here a gap is defined as a string of

consecutive dashes. Now, let us consider the following alignment:

GA---TCCGA

GAAAG-CAGA.

Here are two gaps within this alignment. The rule of measuring the intermittent gap

punishment alignment score (abbreviated by GPS) is as follows:

19



• If xi is aligned with yj, the score σ(xi, yj) is

σ(xi, yj) =

{
2 if xi = yj

−1 if xi 6= yj

• If a (consecutive) subsequence of xi’s (or yj’s) is aligned with a gap of length k,

the score is defined as −(4 + k).

That is, in the first alignment example given above, its GPS is 2 − (4 + 1) + 2 −

(4 + 2) − (4 + 1) + 2 − 1 + 2 + 2 = −7. For the second alignment, its GPS is

2 + 2− (4 + 3)− (4 + 1) + 2− 1 + 2 + 2 = −3.

Given two strings, the problem we would like to solve is to find an alignment such

that its GPS is maximized. Thus, in our example, the best alignment is

GA--TCCGA

GAAAGCAGA.

Its GPS is 2+2-(4+2)-1+2-1+2+2=2.

In our problem, m and n are at most 500. Furthermore, it is required that no space

in one sequence is aligned with a space in another.

Input Format: The input file format is as follows:

1. The first line contains an integer n of sequence pairs; the number n is at most 50.

2. The 2nd line is the sequence X of the first pair.

3. The 3rd line is the other sequence Y of the first pair.

...

2i. The (2i)-th line is the sequence X of the i-th pair.

20



2i+1. The (2i + 1)-th line is the other sequence Y of the i-th pair.

...

2n. The (2n)-th line is the sequence X of the n-th pair.

2n+1. The (2n + 1)-th line is the other sequence Y of the n-th pair.

Output Format: For each pair of sequences, output the maximum GPS in one

line.

21



Sample Input

3

ACGGCTTAGATCCGAGAGTTAGTAGTCCTAAGCTTGCA

AGCTTAGAAAGCAGACACTTGATCCTGACGGCTTGAA

TTGAGTAGTGTTTTAGTCCTACACGACACATCAAATTCGGACAAGGCCTAGCT

TTCAAGTCCTACAATGTGTGTCAAATTCGCTTGGCCGAAAGCC

TTTGGGAACGTGTGTAGACTTCCCCATGCGATGG

AACACACACGGACTTCATGCTGG

Output for the Sample Input

18

20

2

22



Problem G

Space AI Bombs

Input File: pg.in

The time is year 3000. Human beings have settled on planets in many solar systems

and have a star war with an alien species called Romulans. The human scientists

design a new weapon called AI bomb which is capable of space travel across the vast

space. Before launching the weapons, humans send probes to collect Romulan’s defense

parameters. The data shows that Romulans have set up shields in the routes to their

home worlds. Fortunately, some secret information reveals that the shield can be

penetrated using an ion beam with a particular range of frequency. It is possible

to pass the shield if an AI bomb emits an ion beam within that frequency. Now,

human scientists have plotted an interstellar map between several human planets and

Romulan planets. The map is a directed graph like Figure 4. In the figure, human

planets are drawn in boxes (denoted as Hx) and Romulan worlds are drawn in triangles

(denoted as Rx), where x is an integer number. A shield is drawn as a circle in the

figure (denoted as Sx).

Since humans only know where the shields are but do not know the frequency

of each shield, they decide to launch a large number of AI bombs. Each bomb is

configured to emit an ion beam at a particular frequency at first. Once an AI bomb

passes a shield, it will modulate its frequency to a different value by increasing or

decreasing a predefined value. For example, in Figure 4, an AI bomb B1 is launched

from H3 with initial frequency 150 and an interval ± 100. So, when B1 penetrates

shield S5, it may modulate its frequency to 50, 250, or keep its previous frequency

150. After that, the bomb can choose any routes available in the star map. In the

example, the bomb B1 is possible to reach Romulan homeworld R9 by penetrating S5

23



H1

H3

H2

R8

R9

S4

S5

S6

S7

shield parameters
S4: 200-400
S5: 100-300
S6: 100-200
S7: 350-500

Bomb parameters
B1: H3 150 100
B2: H2 250 50

Figure 4: An example star map.

with the original frequency 150 and then passing S4 by changing its frequency to 250

and keeping frequency 250 to pass S5 again and by changing its frequency to 350 in

order to penetrate S7 and then finally nuking Romulan planet R9.

Unfortunately, Romulans knows what humans are planning. Their spies got the

map and the bomb parameters. Of course, Romulans have shield parameters at hand.

They want to know if there are any AI bombs which can reach their homeworlds under

current shield settings. Please note that human AI bombs can choose any route to

travel. If an AI bomb has any chance to reach a Romulan’s home world, then the

bomb must be reported.

Please write a program for the Romulan to defend vicious humans. To simplify the

problem, we restrict the frequency values between 0 and 1000. When a bomb’s new

frequency is outside the range, the new frequency is invalid.

Input Format: The test data begins with a number n in a line which is the number

of test cases. In each test case, it begins with two numbers v and e in a line where v is

the number of vertices (including human planets, Romulan planets, and shields) and e

24



is the number of directed edges, 2≤ v ≤ 100000 and 2 ≤ e ≤ 500000. For convenience,

the vertices are indexed starting with 1.

Next, a line beginning with ‘human m’ tells that there are m human planets. Fol-

lowing the string are m integers, which are the indices of human planets.

Same as above, a string ‘romulan k’ is used to tell the vertex indices of Romulan’s

planets.

A string ‘shield x’ begins the shield parameters, where x is the number of shields.

Each shield parameter is described by (s l u), where s is the shield’s index, l is the

lower bound of the range, and u is the upper bound of the range. The values of l and

u is between 0 and 1000.

A string ‘edge u’ begins the directed edge data, where u is the number of edges.

Each edge is described by (s d), where s is the index of the source vertex and d is the

index of end vertex.

A string ‘bomb p’ begins with the data of deployed AI bombs, where p is the number

of bombs and 1 ≤ p ≤ 10000. Each bomb is described by (h f i), where h is the index

of a vertex (i.e., a human planets where the bomb is located), f is the initial frequency,

and i is the interval to be increased/decreased.

Output Format: Please output the number of bombs that can possibly reach any

of the Romulan homeworlds in one line for each test case. Note that, a bomb may be

able to reach more than one Romulan planets. In that case, it is still counted as 1.

25



Sample Input

1

9 9

human 3 1 2 3

romulan 2 8 9

shield 4

4 200 400

5 100 300

6 100 200

7 350 500

edge 9

1 6

6 8

2 4

4 6

4 5

5 4

3 5

5 7

7 9

bomb 2

3 150 100

2 250 50

Output for the Sample Input

2

26



Problem H

Merging Sequences Problem

Input File: ph.in

Let S be a sequence of n integers, where S[k] with 1 ≤ k ≤ n denotes the k-th

number of S. The maximum prefix sum of S, denoted h(S), is defined to be

h(S) = max
0≤j≤n

∑
1≤k≤j

S[k].

(Note that the range for j starting from 0 is to ensure h(S) ≥ 0, because
∑

1≤k≤0

S[k] =

0.) For example, if

W = −2, 1,−3;

X = 1, 2, 4, 3,−1,−5, 2, 0,−1, 3,−2;

Y = −1, 2, 0, 1, 3,−5, 3, 2, 4,−2,−1,

then h(W ) = 0, h(X) = 1+2+4+3 = 10 and h(Y ) = −1+2+0+1+3−5+3+2+4 = 9.

For each i = 1, 2, . . . , `, let Si be a sequence of ni integers. We say that a sequence

S of n numbers is a merged sequence of S1, S2, . . . , S` if the following conditions hold.

1. n = n1 + n2 + · · ·+ n`.

2. There is a 1–1 mapping f from {1, 2, . . . , n} to {(i, j) | 1 ≤ i ≤ ` and 1 ≤ j ≤ ni}

such that if f(t) = (i, j) then S[t] = Si[j].

3. If t < t′, f(t) = (i, j) and f(t′) = (i, j′), then j < j′.

For example, if we have

S1 = 1, 3,−5, 2,−2;

S2 = 2, 4,−1;

S3 = −1, 0, 3,

27



then both X and Y above are merged sequences of S1, S2, S3. The following sequence,

however, is not a merged sequence of S1, S2, S3.

Z = 1, 3,−5, 2,−2, 2, 4,−1,−1, 3, 0.

(Clearly, if the last two numbers 3 and 0 in Z are exchanged, then the resulting

sequence is a merged sequence of S1, S2, S3.)

Your job is to produce a merged sequence S∗ of S1, S2, . . . , S` with minimum h(S∗).

For instance, the following sequence is a merged sequence for the above S1, S2, S3 whose

maximum prefix sum is minimized:

S∗ = −1, 1, 0, 3,−5, 2,−2, 2, 4,−1, 3.

One can verify that h(S∗) = −1 + 1 + 0 + 3− 5 + 2− 2 + 2 + 4− 1 + 3 = 6.

Input Format: The first line contains a number m with 1 ≤ m ≤ 10 indicating

the number of test cases. Each of the next m lines lists a test case. Each test case lists

those ` (1 ≤ ` ≤ 5) input sequences separated by numbers 9999. Each test case ends

with a number −9999. Two consecutive numbers in a sequence are separated by at

least one single space. You may assume that each input sequence consists of at most

100 integers, each of which is between −100 and 100.

Output Format: For each test case S1, S2, . . . , S`, output its h(S∗) in a single

line.

28



Sample Input

3

1 3 -5 2 -2 9999 2 4 -1 9999 -1 0 3 -9999

5 1 1 9999 -2 -2 -2 9999 10 -20 -9999

-2 1 -3 -9999

Output for the Sample Input

6

4

0

29



Problem I

Harmonic Periods

Input File: pi.in

In real-time scheduling, predictability is very important, i.e., we would like to know

the whole schedule before we really run the tasks. Rate-monotonic scheduling is very

popular in real-time scheduling for periodic tasks, where tasks with shorter periods

have higher priority. However, it is still difficult to know the start time and finish time

of each task and they might be different in each period, especially for tasks with low

priority, i.e. long period. The hyperperiod, the least common multiple of all periods,

is usually too big to be practical to describe the whole schedule. However, if the task

periods are harmonic, i.e. are multiples, it is possible to find the start time and finish

time of each task quickly because the schedule becomes more regular.

0 1 3 4 5 62 7 9 10 11 128 151413 16

T
3

1817

T
2

T
1

Time

T
4

Figure 5: task schedule example

Figure 1 shows that periodic tasks T1, T2, T3, T4 with execution times 1, 1, 3, 1

and periods 2, 4, 16, 32 respectively are schedulable, each task finishes execution in

its period, using the Rate-Monotonic scheduling algorithm since T1, T2, T3, T4 finish

execution at time 1, 2, 12, 16 respectively. T3 is preempted by T1 and T2 at time 4

and time 8 and resume at time 7 and time 11.

Input Format: All the input numbers are positive integers, < 500000, separated

by a space or new line. The first line is the number of task sets. Then, the task sets

30



are listed set by set. Each task set is listed by a line of the number of tasks, ≤ 100, and

lines of task execution time and period pairs, execution time < period. The periods

are harmonic, not sorted, and are different in a task set.

Output Format: For each task set, find and print out the finish time of the

task with the largest period using rate-monotonic scheduling, if schedulable; otherwise

print out -1.

31



Sample Input

3

4

1 2

1 4

3 16

1 32

3

1 4

4 8

256 1024

3

1 2

3 8

1 4

Output for the Sample Input

16

1024

-1

32


