
Montgomery Algorithm for Modular
Multiplication

Professor Dr. D. J. Guan ∗

August 25, 2003

The Montgomery algorithm for modular multiplication is considered to
be the fastest algorithm to compute xy mod n in computers when the values
of x, y, and n are large. In this lecture note, we shall describe the Mont-
gomery algorithm for modular multiplication. This is one of the notes for
the algorithms which my students have difficulty to fully understand.

Suppose we want to compute xy mod n in a computer. We first choose
a positive integer, r, greater than n and relative prime to n. The value of
r is usually 2m for some positive integer m. This is because multiplication,
division and modulo by r can be done by shifting or logical operations in
computers.

Since gcd(r, n) = 1, there are two numbers r−1 and n′ with 0 < r−1 < n
and 0 < n′ < r, satisfying

rr−1 − nn′ = 1.

The algorithm is based on the fact that the computation of xr−1 mod n can
be done very efficiently by the algorithm reduce.

function reduce (x)
begin

q := (x mod r)n′ mod r;
a := (x + qn)/r;
if a > n then a := a− n;
return a;

end

Figure 1: Algorithm for the computation of a = xr−1 mod n.

∗Department of Computer Science, National Sun Yar-Sen Univeristy, Kaohsiung, Tai-
wan 80424 (guan@cse.nsysu.edu.tw).

1



Montgomery Algorithm 2

The reason why the above algorithm works is explained as follows. First,

xr−1 = xrr−1/r = x(nn′ + 1)/r

Note that, for any integer l,

((xn′ + lr)n+x)/r mod n = (xn′n+ lrn+x)/r mod n = (xn′n+x)/r mod n

Therefore, instead of computing q = xn′, we can compute q = xn′ mod r.
Now, suppose 0 ≤ x < rn. The value of a = (x + qn)/r will be less than

2n. Therefore, computing a mod n can be done very easily by subtracting n
from a if a > n.

Suppose that a number x, 0 ≤ x ≤ n, is mapped to xr. It is easy to
verify that

1. x + y is mapped to (x + y)r = xr + yr,

2. xy is mapped to (xy)r = (xr)(yr)r−1,

Therefore, if the numbers x and y are represented by xr and yr in a computer,
then the multiplication algorithm is reduce(xy). The addition algorithm is
unchanged since xr−1 + yr−1 ≡ zr−1 mod n if and only if x + y ≡ z mod
n. The algorithms for subtraction, negation, equality test, inequality test,
multiplication by an integer, and the greatest common divisor with n are
also unchanged.

When the numbers X, Y , and N are large, we can apply the above
algorithm to compute XY mod N in an efficient way. Suppose that

X =
m−1∑
k=0

xkβ
k, Y =

m−1∑
k=0

ykβ
k, N =

m−1∑
k=0

nkβ
k,

and we want to compute A = XY β−m. Let A =
∑m−1

k=0 akβ
k. In the algorithm

montgomery, we use the notation (α)−1
β to denote the inverse of α in Zβ. The

reason why the above algorithm works is explained as follows. The algorithm
computes the answer A incrementally. At each step, xk is used to do the
computation. The computation is similar to the first algorithm. That is,
compute A = A + xkY + qN and then A = A/β.

The rationale behind this computation is to find a proper value of q so
that, at the k-th iteration, the value of A+xkY + qN is a multiple of β. and
that this value is bounded by (R + βk)N . As explained above, the value of
q is

q = (A + xkY )N ′ mod β,



Montgomery Algorithm 3

function montgomery (X, Y )
begin

A := 0;
for k := 0 to m− 1 do begin

q := (a0 + xky0)(β − n0)
−1
β mod β;

A := A + xkY + qN ;
A := A/β;

end;
return A;

end

Figure 2: Algorithm for the computation of A = XY β−m mod N .

where N ′ is the inverse of N in Zβm . Therefore,

q = (A + xkY )N ′ mod β = (a0 + xky0)(β − n0)
−1
β mod β,

In the above equation, we use the fact that

RR−1 −NN ′ ≡ 1 (mod βm).

Thus, −NN ′ mod β = 1, which implies that

N ′ mod β = (−n)−1
β = (β − n0)

−1
β .

Suppose that β = 2k for some positive integer k, and that the value
of n0 = β − 1. Then the value of (β − n0)

−1
β = 1. In this case, q =

(a0 +xky0) mod β, which is the value of the last digit of A+xkY . Therefore,
we can save the computation of the value of q at each iteration.

References

[1] Peter L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519–521, April 1985.

[2] Jean-Claude Bajard, Laurent-Stephane Didier, and Peter Komerup. An
RNS Montgomery modular multiplication algorithm. IEEE Transaction
on Computers, 47(7):766–776, July 1998.


