
Pollard’s Algorithm for Discrete Logarithm
Problem

Professor Dr. D. J. Guan ∗

December 8, 2013

Let p be a prime. The discrete logarithm problem over Zp is:

Given a and b, find x such that ax ≡ b (mod p).

The security of many cryptosystems is based on the difficulty of solving the
discrete logarithm problem. In this lecture note, we shall discuss the Pollard’s
algorithm to solve the discrete logarithm problem. It is also called square-root
attack.

Pollard’s algorithm is a Monte Carlo type probabilistic algorithm. The
algorithm first finds two numbers u and v such that

au ≡ bv (mod p). (1)

The method used in this step is to find a sequence of numbers x0, x1, . . . until
two equal ones are found. The sequence is defined to be:

x0 = 1 (2)

xi+1 =

bxi if 0 < xi ≤ p/3
x2i if p/3 < xi ≤ 2p/3
axi if 2p/3 < xi < p

(3)

Note that xi can also be expressed as

xi ≡ aαibβi (mod p).

To compute the sequence, the algorithm computes

α0 = 0

αi+1 =

αi if 0 < xi ≤ p/3
2αi if p/3 < xi ≤ 2p/3
αi + 1 if 2p/3 < xi < p

∗Department of Computer Science, National Sun Yar-Sen University, Kaohsiung, Tai-
wan 80424 (guan@cse.nsysu.edu.tw).

1

β0 = 0

βi+1 =

βi + 1 if 0 < xi ≤ p/3
2βi if p/3 < xi ≤ 2p/3
βi if 2p/3 < xi < p

The algorithm needs not store all the numbers to find an equal pair. The
algorithm run through the sets

(xi, αi, βi;x2i, α2i, β2i), i = 1, 2, . . . ,

generating each one from the previous one, until the one with xi = x2i is
generated. Then we have au ≡ bv (mod p), where

u = α2i − αi (mod p− 1)

v = βi − β2i (mod p− 1).

Note that the sequence {xi} can be regarded as a random sequence. It is
estimated that the period of the random sequence is√

π5p

288
≈ 1.0308

√
p.

That is, the algorithm may need to try O(
√
p) iterations to obtain the right

pair xi and x2i.
The second step is to find x. If v ≡ 0 (mod p− 1), then the algorithms

fails. Assume that v 6≡ 0 (mod p − 1). The algorithm then finds d, the
greatest common divisor of v and p− 1, by the Extended Euclid algorithm.
That is,

d = (v, p− 1) = vν + (p− 1)µ.

Raising both sides of au ≡ bv (mod p) to the power ν gives

auν ≡ bvν ≡ bd−(p−1)µ ≡ bd ≡ (ax)d (mod p).

Therefore, xd ≡ uν (mod p− 1), which implies that

xd = uν + w(p− 1).

Since d | |(p− 1), hence d | |nν. We obtain

x = (uν + w(p− 1))/d. (4)

The value of w is between 0 and d. In the case that d is small, we can do
an exhaustive search. If d is large, then the search will take a long time to
finish.

If d = 1, that is (v, p− 1) = 1, then equation 4 can be reduced to

x = uν = uv−1 (mod p− 1).

2

The above algorithm can also be adapted to work on the factors of p− 1.
This is called the multistage method. Let p− 1 = st. The method is to use
as and bs to replace a and b. This leads to find u and v such that

(as)u ≡ (bs)v (mod p).

The other steps are similar.
Note that there are more efficient algorithms to solve the discrete loga-

rithm problem, such as the Pohlig-Hellman algorithm and the index calculus
method. All these algorithms can work on smaller subgroups if p − 1 can
be factored. This is why p − 1 should have large prime factors to resist the
square-root attack.

References

[1] J. M. Pollard. Monte Carlo method for index computation (mod p).
Mathematics of Computation, 32(143):918–924, July 1978.

3

