Introduction to the Shank's SQUFOF Integer Factoring Algorithm

D. J. Guan *

May 26, 2010

Abstract

Shank's SQUFOF integer factoring algorithm works with integers which are at most $2\sqrt{n}$. It can be implemented very efficiently for factoring 62-bit integers in a 32-bit computer.

Theory of SQUFOF Algorithm

A binary quadratic form (a,b,c) is a polynomial in x and y

$$f(x,y) = ax^2 + bxy + cy^2$$

$$= \left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{cc} a & b \\ 0 & c \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right),$$

where a, b, and c are integers.

Quadratic forms and ideals are related to quadratic numbers.

Let
$$D = b^2 - 4ac > 0$$
.

$$\frac{-b+\sqrt{D}}{2|a|}$$
 is the quadratic number in $\mathbf{Q}(\sqrt{D})$ associated to the form (a,b,c)

Ideals are used in conceptual proofs.

Quadratic forms are used in computation.

Two quadratic forms f and g are equivalent if there exists an integer matrix $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ of determinant equal to 1 such that

$$g(x,y) = f(\alpha x + \beta y, \gamma x + \delta y)$$

$$= \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Theorem 1 Equivalence preserves the discriminant $D = b^2 - 4ac$.

Primitive and Reduced Quadratic Forms

A quadratic form (a, b, c) is *primitive* if gcd(a, b, c) = 1.

A quadratic form (a, b, c) of discriminant D > 0 is reduced if

$$\left|\sqrt{D} - 2|a|\right| < b < \sqrt{D}.$$

Theorem 2 If (a,b,c) is a reduced form, then

- 1. a and c are of opposite sign.
- 2. |a| + |c| and b are less than \sqrt{D} .

Theorem 3 A form (a,b,c) is reduced if and only if

$$\left| \sqrt{D} - 2|c| \right| < b < \sqrt{D}.$$

Theorem 4 Let $\tau = \frac{-b + \sqrt{D}}{2|a|}$ be the quadratic number associated to the form (a,b,c). (a,b,c) is reduced if and only if $0 < \tau < 1$ and its conjugate $-\sigma(\tau) > 1$.

Reduction Operator ρ

Let D > 0 be a discriminant, $a \neq 0$ and b are integers.

The reduction operator ρ is defined as

$$\rho(a, b, c) = \left(c, \ r(-b, c), \ \frac{r(-b, c)^2 - D}{4c}\right)$$

where r(b,a) is the unique integer r satisfying

- 1. $r \equiv b \pmod{2a}$, and
- 2. if $|a| > \sqrt{D}$ then $-|a| < r \le |a|$, if $|a| < \sqrt{D}$ then $\sqrt{D} 2|a| < r \le \sqrt{D}$.

The inverse of ρ is given by

$$\rho^{-1}(a,b,c) = \left(\frac{r(-b,a)^2 - D}{4a}, \ r(-b,a), \ a\right)$$

Reduction of Indefinite Quadratic Forms

while
$$(a, b, c)$$
 is not reduced do $(a, b, c) = \rho(a, b, c)$

Theorem 5 The number of iterations is at most $2 + \left| \log \frac{|c|}{\sqrt{D}} \right|$.

Theorem 6 If (a,b,c) is a reduced form then $\rho(a,b,c)$ is also a reduced form.

Theorem 7 The reduced forms equivalent to (a, b, c) are exactly the forms $\rho^k(a, b, c)$ for sufficiently large k.

Composition of Forms

The composition of forms come from the product of ideals.

Let (a_1, b_1, c_1) and (a_2, b_2, c_2) be two forms of the same discriminant D, $s = (b_1 + b_2)/2$, $t = (b_1 - b_2)/2$.

Let u, v, w, and d be such that $ua_1+va_2+ws=d=\gcd(a_1, a_2, s),$ $d_0=\gcd(d, c_1, c_2, t).$

The composition of (a_1, b_1, c_1) and (a_2, b_2, c_2) is defined as

$$(a_3, b_3, c_3) = \left(\frac{d_0 a_1 a_2}{d^2}, b_2 + \frac{2a_2(v(s - b_2) - wc_2)}{d}, \frac{b_3^2 - D}{4a_3}\right).$$

If
$$gcd(a,b) = 1$$
 then $(a,b,c)^2 = \left(a^2, b, \frac{c}{a}\right)$

Ambiguous Forms

A quadratic form (a, b, c) for discriminant D is ambiguous if

$$(a,b,c)^2 \equiv (1,x,y) \bmod \Gamma_{\infty}$$

for some integers x and y, where $\Gamma_{\infty} = \left\{ \left(\begin{array}{cc} 1 & m \\ 0 & 1 \end{array} \right) \middle| m \in \mathbf{Z} \right\}$.

If (a, b, c) is ambiguous then $a \mid b$, which implies that

$$D = b^{2} - 4ac = (ka)^{2} - 4ac = a(k^{2}a - 4c).$$

Therefore, a is a factor of D.

Find an Ambiguous Form

Start from the identity form $f = \left(1, b, \frac{b^2 - D}{4}\right)$.

Find a form $g=(x^2,y,z)$ by repeatedly applying the ρ function, i.e., compute $\rho(f), \rho^2(f), \ldots, \rho^k(f)=g$.

Let h = (x, y, xz).

1. h is not primitive.

Let p be a prime dividing x and y, then $p^2 \mid D = y^2 - 4x^2z$, i. e., p^2 is a factor of D.

2. h is primitive.

 $h^2 = g$. Let $f = h^{-1} = (x, -y, xz)$. f will be on an ambiguous cycle. We can find an ambigous form g by repeatedly applying the ρ function, i.e., compute

$$\rho(f), \rho^2(f), \dots, \rho^l(f) = g.$$

Theorem 8 There is an ambiguous from g in the cycle of f at l = k/2.

Two problems with the above method:

- 1. Some ambiguous forms will correspond to a trivial factor of n.
- 2. No guarantee to find a square form other than the identity.

Solution to problem 1:

Trivial factors of n occurs when h lies in the priciple cycle itself.

This implies that $a^2 < \sqrt{D}$, which occurs quite rare.

We can store these values and avoid them in the search.

Problem 2 are more basic:

When the principle cycle is short, there may not be another square form. For example, when $n = (2k + 1)^2 + 4$, the length of the cycle is 1.

The solution is to work with many D's, which is a small multiple of n. The chance of all the D's has short cycle is small.

Note that most implementation of the SQUFOF is a probabilistic algorithm. It may fail to find a nontrivial factor of n.

The SQUFOF Algorithm

input: n

output: a factor of nalgorithm: if n is prime then return(1) if n is a square then return (\sqrt{n}) if $n \equiv 1 \pmod{4}$ then $D = n, d = |\sqrt{D}|, b = \lfloor (d-1)/2 + 1 \rfloor$ else D = 4n, $d = \left| \sqrt{D} \right|$, $b = \left\lfloor d/2 + 1 \right\rfloor$ end $f = (a, b, c) = (1, b, (b^2 - D)/4), Q = \emptyset$ for i = 1, 2, ... do

```
f = (a, b, c) = \rho(a, b, c)
   if |a| \le |\sqrt{d}| then Q = Q \cup \{|a|\}
   if i is even then
      if a = s^2 for some integer s \not\in Q then
         if t = \gcd(a, b, D) > 1 then
             return(t^2)
         else
             f = (a, b, c) = (s, -b, sc)
             while f is not reduce do f = (a, b, c) = \rho(a, b, c)
             do s = b; f = (a, b, c) = \rho(a, b, c) while s \neq b
             if a is even then a = a/2
             return(|a|)
         end
      end
   end
end
```

References

- 1. Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993.
- 2. Hans Riesel. *Prime Numbers and Computer Methods for Factorization*. Birkhäuser, 1994.
- 3. Robert D. Silverman. The multiple polynomial quadratic sieve. *Mathematics of Computation*, 48(117):329–339, January 1987.