
Introduction to the Shank’s SQUFOF

Integer Factoring Algorithm

D. J. Guan ∗

May 26, 2010



Abstract

Shank’s SQUFOF integer factoring algorithm works with

integers which are at most 2
√
n. It can be implemented

very efficiently for factoring 62-bit integers in a 32-bit

computer.



Theory of SQUFOF Algorithm

A binary quadratic form (a, b, c) is a polynomial in x and y

f(x, y) = ax2 + bxy + cy2

=
(
x y

)( a b
0 c

)(
x
y

)
,

where a, b, and c are integers.
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Quadratic forms and ideals are related to quadratic numbers.

Let D = b2 − 4ac > 0.

−b+
√
D

2|a|
is the quadratic number in Q(

√
D) associated to the

form (a, b, c)

Ideals are used in conceptual proofs.

Quadratic forms are used in computation.
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Two quadratic forms f and g are equivalent if there exists an

integer matrix

(
α β
γ δ

)
of determinant equal to 1 such that

g(x, y) = f(αx+ βy, γx+ δy)

=
(
x y

)( α γ
β δ

)(
a b
0 c

)(
α β
γ δ

)(
x
y

)
.

Theorem 1 Equivalence preserves the discriminant D = b2−4ac.
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Primitive and Reduced Quadratic Forms

A quadratic form (a, b, c) is primitive if gcd(a, b, c) = 1.

A quadratic form (a, b, c) of discriminant D > 0 is reduced if∣∣∣√D − 2|a|
∣∣∣ < b <

√
D.

Theorem 2 If (a, b, c) is a reduced form, then

1. a and c are of opposite sign.

2. |a|+ |c| and b are less than
√
D.

Theorem 3 A form (a, b, c) is reduced if and only if∣∣∣√D − 2|c|
∣∣∣ < b <

√
D.

4



Theorem 4 Let τ =
−b+

√
D

2|a|
be the quadratic number associ-

ated to the form (a, b, c). (a, b, c) is reduced if and only if 0 < τ < 1

and its conjugate −σ(τ) > 1.



Reduction Operator ρ

Let D > 0 be a discriminant, a 6= 0 and b are integers.

The reduction operator ρ is defined as

ρ(a, b, c) =

(
c, r(−b, c),

r(−b, c)2 −D
4c

)
where r(b, a) is the unique integer r satisfying

1. r ≡ b (mod 2a), and

2. if |a| >
√
D then −|a| < r ≤ |a|,

if |a| <
√
D then

√
D − 2|a| < r ≤

√
D.

The inverse of ρ is given by

ρ−1(a, b, c) =

(
r(−b, a)2 −D

4a
, r(−b, a), a

)
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Reduction of Indefinite Quadratic Forms

while (a, b, c) is not reduced do

(a, b, c) = ρ(a, b, c)

Theorem 5 The number of iterations is at most 2 +

⌈
log

|c|√
D

⌉
.

Theorem 6 If (a, b, c) is a reduced form then ρ(a, b, c) is also a

reduced form.

Theorem 7 The reduced forms equivalent to (a, b, c) are exactly

the forms ρk(a, b, c) for sufficiently large k.
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Composition of Forms

The composition of forms come from the product of ideals.

Let (a1, b1, c1) and (a2, b2, c2) be two forms of the same discrim-
inant D, s = (b1 + b2)/2, t = (b1 − b2)/2.

Let u, v, w, and d be such that ua1+va2+ws = d = gcd(a1, a2, s),
d0 = gcd(d, c1, c2, t).

The composition of (a1, b1, c1) and (a2, b2, c2) is defined as

(a3, b3, c3) =

(
d0a1a2

d2
, b2 +

2a2(v(s− b2)− wc2)

d
,
b23 −D

4a3

)
.

If gcd(a, b) = 1 then (a, b, c)2 =
(
a2, b,

c

a

)
7



Ambiguous Forms

A quadratic form (a, b, c) for discriminant D is ambiguous if

(a, b, c)2 ≡ (1, x, y) mod Γ∞

for some integers x and y, where Γ∞ =

{(
1 m
0 1

)∣∣∣∣∣m ∈ Z

}
.

If (a, b, c) is ambiguous then a | b, which implies that

D = b2 − 4ac = (ka)2 − 4ac = a(k2a− 4c).

Therefore, a is a factor of D.
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Find an Ambiguous Form

Start from the identity form f =

(
1, b,

b2 −D
4

)
.

Find a form g = (x2, y, z) by repeatedly applying the ρ function,

i.e., compute ρ(f), ρ2(f), . . . , ρk(f) = g.

Let h = (x, y, xz).

1. h is not primitive.

Let p be a prime dividing x and y, then p2 | D = y2 − 4x2z,

i. e., p2 is a factor of D.
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2. h is primitive.

h2 = g. Let f = h−1 = (x,−y, xz). f will be on an ambiguous

cycle. We can find an ambigous form g by repeatedly applying

the ρ function, i.e., compute

ρ(f), ρ2(f), . . . , ρl(f) = g.

Theorem 8 There is an ambiguous from g in the cycle of f at

l = k/2.



Two problems with the above method:

1. Some ambiguous forms will correspond to a trivial factor of

n.

2. No guarantee to find a square form other than the identity.
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Solution to problem 1:

Trivial factors of n occurs when h lies in the priciple cycle itself.

This implies that a2 <
√
D, which occurs quite rare.

We can store these values and avoid them in the search.
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Problem 2 are more basic:

When the principle cycle is short, there may not be another

square form. For example, when n = (2k + 1)2 + 4, the length

of the cycle is 1.

The solution is to work with many D’s, which is a small multiple

of n. The chance of all the D’s has short cycle is small.

Note that most implementation of the SQUFOF is a probabilistic

algorithm. It may fail to find a nontrivial factor of n.
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The SQUFOF Algorithm

input: n

output: a factor of n

algorithm:

if n is prime then return(1)

if n is a square then return(
√
n)

if n ≡ 1 (mod 4) then

D = n, d =
⌊√
D
⌋
, b = b(d− 1)/2 + 1c

else

D = 4n, d =
⌊√
D
⌋
, b = bd/2 + 1c

end

f = (a, b, c) = (1, b, (b2 −D)/4), Q = ∅
for i = 1,2, . . . do
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f = (a, b, c) = ρ(a, b, c)
if |a| ≤

⌊√
d
⌋

then Q = Q ∪ {|a|}
if i is even then

if a = s2 for some integer s 6∈ Q then
if t = gcd(a, b,D) > 1 then

return(t2)
else

f = (a, b, c) = (s,−b, sc)
while f is not reduce do f = (a, b, c) = ρ(a, b, c)
do s = b; f = (a, b, c) = ρ(a, b, c) while s 6= b

if a is even then a = a/2
return(|a|)

end
end

end
end
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